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ABSTRACT 

The purpose of this study was to examine the presence of linkage disequilibrium between nine microsatellite loci in and out 
of Major Histocompatibility Complex (MHC) as a description of population structure in White Karaman, Awassi and 
Merinolandschaf sheep populations. Of the 108 pairwise comparisons a significant linkage disequilibrium was observed 
between six and seven loci pair after exact test and pooling, respectively. Only two and three of the significant deviations 
were present between MHC-linked loci. The results indicated that the populations analyzed in this study were mostly in 
equilibrium and that selection did not play a major role to maintain the linkage disequilibrium between MHC-linked loci in 
the populations studied. 
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ÖZET 

Akkaraman, İvesi ve Merinolandschaf Koyun Irklarında MHC ile Bileşik Mikrosatellit Lokusları Arasında Bileşiklik 
Dengesizliği 

Sunulan çalışmada, Akkaraman, İvesi ve Merinolandschaf koyun ırklarında Büyük Doku Uyuşum Komplexi (MHC) ile 
bileşik olan ve olmayan mikrosatellit lokusları açısından bileşiklik dengesizliği olup olmadığı araştırıldı. Toplam 108 
karşılaştırmada normal ve toplulaştırılmış analiz sonucunda sırasıyla altı ve yedi tane lokus çifti arasında önemli bileşiklik 
dengesizliği tespit edildi (p < 0,05). Normal ve toplulaştırılmış analiz sonucunda önemli sapmalardan sırasıyla yalnız ikisi ve 
üçünün MHC ile birleşik lokuslar arasında olduğu bulundu. Sonuç olarak araştırmaya konu olan populasyonların incelenen 
lokuslar açısından büyük oranda denge durumunda bulunduğu ve MHC ile birleşik lokuslar arasındaki bileşiklik 
dengesizliğinin seleksiyon yoluyla sürdürülmediği kanısına varıldı. 

Anahtar Kelimeler: Mikrosatellit, MHC, Koyun 

INTRODUCTION

Linkage disequilibrium (LD) or genotypic 
disequilibrium can give information about population 
structure and history. LD is also widely used to 
detect genes associated inherited diseases (1). It is 
also important to have information about the 
presence of LD in a population for forensic purposes 
such as identity or parentage testing (2). 

Major Histocompatibility Complex (MHC) plays 
a key role in the immune response and is thought to 
be under some selection pressures due to some patho-
genic agents (3, 4). Therefore, several studies 
indicated close associations between polymorphisms 
of MHC-genes and resistance to some animal 
diseases (4-6). It was found in different studies that 
microsatellite loci located within MHC showed high 
levels of LD but not between MHC and flanking 
markers in some free living sheep populations (7, 8).  

Microsatellites are noncoding DNA fragments 
with short tandem repeat sequences (STR). The 
motives of one to four nucleotides can repeat 
tandemly up to thirty times. Repeat regions are 
flanked with nonrepeat sequences. Due to their high 
mutation rates, microsatellites show a great deal of 
polymorphism (9). Microsatellites are widely used 
for examining of population structure, gene and 
Quantitative Trait Loci (QTL) mapping and forensic 
purposes due to their high polymorphisms and the 
simplicity of their analysis (2, 10-13). Primer binding 
regions of some microsatellite loci are highly 
conserved, which thereby allows the use of same 
microsatellite markers in closely related species such 
as cattle, sheep and goat. For example, about 70% of 
the bovine derived microsatellites reciprocally 
amplify ovine, and over 60% of these are informative 
in sheep (14, 15). 
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The purpose of this study was to examine 
presence of LDs between six MHC linked 
microsatellite loci and to compare with that between 
MHC unlinked loci in White Kraman, Awassi and 
Merinolandschaf sheep populations. 

MATERIALS and METHODS 

Animal material : Blood samples were collected 
randomly from three local sheep breeds. Two of them 
were from Turkey (White Karaman sheep (n=60) 
from Central Anatolia and Awassi sheep (n=63) from 
South-East Anatolia) and the other one was from 
Germany (Merinolandschaf (n=70) from Baden-
Würtemberg). The blood samples collected from 

Turkey were conserved with NaCl until DNA 
extraction. However, the blood samples from 
Germany were deep-frozen. DNA was extracted by 
using a Phenol-Chloroform extraction following 
Proteinase-K digestion. 

Microsatellite loci : Nine microsatellite loci were 
included in the analysis. Six of them were linked 
with MHC located on sheep chromosome (OAR) 20 
(16). The other microsatellite loci were located on 
different sheep chromosomes and were not linked 
with MHC. These unlinked loci were used for 
comparing of the results with those linked with 
MHC. Table 1 gives some information about the loci 
studied.  

Table 1: Information about the microsatellite loci 

Locus Chromosom Repeat motive References 
MHC-linked    
MSDRB 20 (Class IIa) (GT)n(GA)m Schweiger et al. (17) 
DYMS11) 20 (Class IIb) (CA)12 Buitkamp et al. (18) 
SMHCC11) 20 (Class I) (CA)20 Groth and Wetheral (19) 
BF1) 20 (Class III) (CA)24 Groth and Wetheral (20) 
BM12582) 20 (Adjacent to Class IIa) (GT)16 Bishop et al. (10) 
BM18182) 20 (Adjacent to Class I) (GT)13 Bishop et al. (10) 
MHC-unlinked    
ILSTS0052) 7 (AT)6(GT)9(AT)7 Brezinsky et al. (11) 
ILSTS0112) 9 (CA)11 Brezinsky et al. (12) 
ILSTS0592) 13 (CA)4(GT)21 Kemp et al. (13) 

1)Locus was defined in sheep, 2)Locus was defined in cattle 

Table 2: PCR conditions used for amplification of different loci 

Conditions (C°/sec) 
Locus MgCl2(mM) Denaturation Annealing Extention 
MSDRB, BF, SMHCC1 1,6 94/30 60/60 72/60 
DYMS1 1,6 94/30 52/60 72/60 
BM1258, BM1818 1,4 94/15 58/30 72/20 
ILSTS11, ILSTS059 1,6 94/30 60/30 72/30 
ILSTS005 1,6 94/30 54/30 72/30 

Marker genotyping : The microsatellite loci 
were amplified by Polymerase Chain Reaction (PCR) 
using fluorescein labeled primers, and the fragment 
lengths of the amplification products were analyzed 
by the use of an A.L.F. Sequencer (Pharmacia) on 
%5 HydroLynk gels. The lengths of the amplified 
fragments were measured by using two internal stan-
dard markers, which were the amplification products 
of a λ-Phage-DNA (Mutant CI857SAM7).  

Electrophoresis was performed in 0.6 % TBE 
buffer at running condition of 1500 V, 45 mA and 50 
°C for 3 hrs. Analysis of data was carried out with 
AlleleLinks software (Pharmacia, Freiburg, 
Germany).  

PCR conditions used were as follows: Initial 
denaturation for 3 min at 94 °C followed by 30 PCR 
cycles each with 30-60 sec. at 52-60 °C, 30-60 sec. at 
72 °C and 30-60 sec at 94 °C, and a final extension 
for 5 min at 72 °C (Table 2). PCR reactions were 
carried out for volumes of 12,5 µl with 0.4-0,8 µM 
primer, 200 µM each dNTP, 100 ng genomic DNA, 
1,4-1,6 mM MgCl2 (Table 2) and 0.5 units of Taq 
polymerase (Roth, Karlsruhe).  

Statistical analysis : To estimate the genotypic 
disequilibrium between loci GENEPOP Version 3.3 
(21), was used. GENEPOP creates contingency 
tables for all pairs of loci in each sample, then 
performs a probability test (Fisher's exact test) for 
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each table using a Markov-Chain-Method. As no 
family information was available, the haplotype 
frequencies could not be estimated. But, the observed 
genotypic frequencies were compared with the 
expected genotypic frequencies under equilibrium 
conditions. The null hypothesis (Ho) was that 
genotypes for one locus are independent from the 
genotypes for another locus. 

RESULTS 

Table 3 shows the pairs of loci and p-values for 
the populations in which significant LDs were 
observed after the exact test and pooling. Of 108 
comparisons after exact test, six significant LDs were 
observed. In the White Karaman population, 
significant LDs were observed for four pairs of loci 
while, significant deviations were found for only two 

pairs of loci in Merinolandschaf. In Awassi 
population, no significant deviation from equilibrium 
was observed. Significant deviations observed in 
White Karaman were between loci which were 
known to be unlinked. In Merinolandschaf, however 
two significant deviations were observed between 
loci which were known to be linked with MHC on 
OAR20 (16, 22). The highly significant deviations 
observed from the expectations could have been due 
to some rare alleles. To test this, the most frequent 
allele of a locus was considered as an allele and 
remaining all other alleles pooled to a second allele; 
and the analysis was run again. Also after pooling, 
significant LDs (p < 0,05) could be observed for 
seven pairs of loci in different populations. After 
pooling four significant deviations were observed 
between loci which were unlinked. 

Table 3: Significant p-values for the loci pair examined before and after pooling 

 unpooled pooled 
Population Loci pair p Loci pair p 
     

SMHCC1-ILSTS059 ** SMHCC1-DYMS1 * 
BM1258-ILSTS059 *   

BF-ILSTS011 ***   WK 

BM1258-ILSTS011 **   
  MSDRB-ILSTS059 * AW   SMHCC1-ILSTS011 * 

SMHCC1-BF ** DYMS1-BM1818 * 
SMHCC1-BM1818 *** MSDRB-BM1258 * 

  ILSTS005-BM1258 * ML 

  ILSTS011-BM1258 * 
WK: White Karaman; AW: Awassi; ML: Merinolandschaf 
*: p < 0,05 **: p < 0,01 ***: p < 0,001 

DISCUSSION

The purpose of this study was to test the presence 
of LD between some microsatellite loci in and out of 
MHC in White Karaman, Awassi and 
Merinolandschaf sheep populations. It was not 
intended to estimate the degree of LD for the 
population and loci. Nor was aimed to estimate the 
gametic frequencies or recombination rate, as no 
family information was available.  

LD can arise via linkage, selection, population 
admixture with different allele frequencies, random 
drift in small populations, different allele frequencies 
in males and females (23). Investigations of different 
populations showed that LD decreased with the 
marker distance only for closely linked loci (24, 25). 
However, if there were not other factors, LD due to 
linkage would be lost after some generations 
depended on the recombination frequencies between 

loci (23). Since the samples used in this study were 
collected randomly from the populations, the animals 
were as unrelated as possible, and the breeds were 
old, significant LD due to linkage was not thereby 
expected. In this study, significant LDs have been 
found even between unlinked loci or loci mapped 
with great distance on the same chromosome and 
these findings agree with this suggestion. This was 
the case for both before and after pooling. Therefore, 
it seems that there is no tendency in the sheep 
populations studied to maintain LD even between 
closely linked loci in MHC, i.e. due to selection. 
These results contrast with those of Paterson (8), who 
found significant LD between MHC linked loci in a 
free living sheep population. Paterson (8) concluded 
that LD between the MHC linked loci were 
maintained due to selection. The populations studied 
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here were kept under the control of human. Thus the 
selection pressure of diseases on the populations here 
might have been less than that on the sheep 
population studied by Paterson (8). The 
investigations of Ohta (26) and Farnir et al. (24) 
showed that selection played a less important role 
than other factors, i.e. inbreeding or population 
subdividing.  

The significant LDs found between unlinked loci 
in this study is in accordance with the results of 
Farnir et al. (24) who found significant LD (at p < 
0,05) between unlinked loci with a frequency of 12% 
(out of 281 microsatellite markers). Nevertheless, 
Tenesa et al. (25) could not observe any significant 
LDs between unlinked loci (13 loci on two 
chromosomes, n=50), while they found significant 
LDs between loci closer than 10 cM. However it is 
difficult to compare the results of this study with 
those of Farnir et al. (24) and Tenesa et al. (25) 
because, the frequencies of gametic genotypes were 
not estimated here.  

After pooling significant deviations were 
observed between loci and the p-values decreased as 
low as < 0,05. These results indicate that the 
significant deviations observed from HWE before 
pooling could have been due to some rare alleles. A 
total of 108 tests were performed for three 
populations [9x(9-1)/2)x3] and seven significant 

deviations (6,48%) were observed in all populations. 
This kind of significance can be observed just by 
chance, if the sample size is small. Significant 
deviations after pooling were observed only for one 
or two pairs of loci in the Turkish sheep populations. 
Significant LDs after pooling between the locus 
BM1258 and others in Merinolandschaf, seem to be 
specific for this locus, and could be because of some 
null alleles. Null alleles arise due to mutations in the 
nucleotide sequence of the primer binding regions, so 
that some alleles can not be amplified by using PCR 
(27).  

These results suggest that a population admixture 
did not occur between the sheep populations studied 
to cause significant disequilibrium between loci 
tested. Furthermore, the results suggest that the lack 
of significant LDs did not indicate a localisation of 
loci on different chromosomes. As a conclusion the 
results indicated that the populations in this study 
were mostly in equilibrium and that selection did not 
play a major role to maintain the linkage 
disequilibrium between MHC-linked loci in the 
populations studied. 
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