

Kudret YENİLMEZ ^{1, a} Halef DOĞAN ^{1, b} Hasan DOĞAN ^{1, c} Sinan VICIL ^{2, d}

- ¹ Tekirdağ Namık Kemal University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynaecology, Tekirdağ, TÜRKİYE
- ² Tekirdağ Namık Kemal University, Faculty of Veterinary Medicine, Department of Biochemistry, Tekirdağ, TÜRKİYE
- a ORCID: 0000-0002-5532-0525
- ^b ORCID: 0000-0003-1365-1729
- c ORCID: 0000-0002-2642-4931
- d ORCID: 0000-0002-0444-4771

Received : 11.06.2025 **Accepted** : 08.09.2025

cepted . 00.09.2020

Correspondence

Kudret YENİLMEZ

Tekirdağ Namık Kemal University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynaecology Tekirdağ – TÜRKİYE

kyenilmez@nku.edu.tr

RESEARCH ARTICLE

F.U. Vet. J. Health Sci. 2025; 39 (3): 154 - 158 http://www.fusabil.org

Assessment of Some Biochemical and Reproductive Parameters in Cyclic and Acyclic Holstein Cows at the End of Voluntary Waiting Period

This study aimed to determine certain biochemical and reproductive parameters in cyclic and acyclic Holstein cows at the end of the voluntary waiting period. A total of 30 Holstein cows, were used in the study. Among these animals, those with a corpus luteum (CL) on their ovaries in either of the consecutive examinations performed on days 45 and 55 postpartum, and had a blood progesterone level >1 ng/mL, were considered cyclic (n=15); Those with no CL on their ovaries in either examination and with a blood progesterone level <1 ng/mL were considered acyclic (n=15). On day 55 postpartum, blood samples were obtained from each cow. Parity and body condition score (BCS) were recorded for each animal. The serum samples were collected and stored at -80°C until analysis. β-hydroxybutyrate (BHB), non-esterified fatty acids (NEFA), glucose, cholesterol, triglyceride and progesterone levels were measured. The first estrus after the voluntary waiting period was determined based on increased locomotor activity, uterine tone, and the presence of a Graafian follicle on the ovary. Farm records were used to evaluate the reproductive parameters. It was found that the intervals from calving to first estrus, calving to first insemination, and calving to conception were significantly shorter in cyclic cows compared to acyclic cows. When comparing biochemical parameters, parity, and BCS, no significant differences were found between the groups. In conclusion, while there were no significant differences in biochemical parameters, parity, or BCS between cyclic and acyclic cows, reproductive parameters were significantly improved in cyclic cows.

Key Words: Biochemical, reproductive, cyclicity, postpartum, cow

Siklik ve Asiklik Holştayn İneklerde Gönüllü Bekleme Süresi Sonunda Bazı Biyokimyasal ve Üreme Parametrelerinin Değerlendirilmesi

Bu çalışmada, gönüllü bekleme periyodu sonunda siklik ve asiklik Holstein ineklerde belirli biyokimyasal ve üreme parametrelerinin belirlenmesi amaclandı. Calısmada toplam 30 Holstein inek kullanıldı. Bu hayvanlar, doğum sonrası 45. ve 55. günlerde yapılan ardışık muayenelerden birinde ovaryumlarında korpus luteum (CL) bulunan ve kan progesteron seviyesi >1 ng/mL olan inekler siklik (n= 15), her iki muayenede ovaryumlarında CL olmayan ve kan progesteron seviyesi <1 ng/mL olan inekler asiklik (n=15) olarak kabul edildi. Doğum sonrası 55. günde her inekten kan örnekleri alındı. Her hayvan için parite ve vücut kondisyon skoru (VKS) kaydedildi. Serum örnekleri toplanarak ve analiz edilene kadar -80°C'de saklandı. β-hidroksibutirat (BHB), esterlenmemiş yağ asitleri (NEFA), glukoz, kolesterol, trigliserid ve progesteron düzeyleri ölçüldü. Artan lokomotor aktivite, artan uterus tonusu ve ovaryumda Graaf folikülünün varlığına dayanarak, gönüllü bekleme süresinden sonraki ilk östrus belirlendi. Üreme parametrelerini belirlemek için çiftlik kayıtları kullanıldı. Siklik ineklerde buzağılamadan ilk östrusa, buzağılamadan ilk tohumlamaya ve buzağılamadan gebe kalmaya kadar gecen sürelerin asiklik ineklere kıyasla anlamlı derecede daha kısa olduğu bulundu. Diğer biyokimyasal parametreler, parite ve BCS karşılaştırıldığında, gruplar arasında anlamlı bir fark bulunmadı. Sonuç olarak, siklik ve asiklik inekler arasında biyokimyasal parametreler, parite veya BCS'de anlamlı bir fark bulunmazken, üreme parametreleri siklik ineklerde daha iyiydi.

Anahtar Kelimeler: Biyokimyasal, reprodüktif, siklik, pospartum, inek

Introduction

Reproductive efficiency is one of the most critical factors that influences profitability in dairy cow farming. The calving interval is considered one of the most important parameters used to assess reproductive performance in cows. For dairy cattle, the economically optimal calving interval is generally accepted to be one year (1, 2). For reaching this economically optimal 365-day calving interval, it is crucial that ovarian cyclicity returns early in the postpartum period (pp), an accurate estrus can be detected, and conception rates at first insemination are high (3).

The period between calving and first insemination is referred to as Voluntary Waiting Period (VWP) (4, 5). Maintaining a 12-month calving interval in dairy cows requires the animal to conceive again as soon as possible after calving. To reach such a calving interval, uterine involution and re-establishment of endocrine function must be completed during the VWP (6,7). The VWP should be preferably around 45-50 days (8, 9). In Holstein cows, the first wave of follicular growth begins around two weeks after calving about In about 30% to 40% of these cows, ovulation occurs ovulation occurs

between days 16 and 20 pp in about 30% to 40% of these cows. However, 30% to 40% of cows ovulate between 30 and 50 days pp, while about 20% to 40% remain anovulatory until 50 to 60 days pp (10-12).

An early return of ovarian cyclicity improves reproductive efficiency, leading to greater milk yield (13). In contrast, delayed ovarian cyclicity during the pp period negatively affects reproductive performance (14). The onset of ovarian cyclicity, the first ovulation, and the continuation of regular estrous and ovulatory cycles after calving are influenced by several factors, including breed, parity, season, body condition score (BCS), postpartum diseases, and nutrition (15).

Although extended VWP is known to impair fertility, there isn't enough research on this topic in Holstein cows raised under Turkish conditions. To adress this gap, this study aimed to evaluate certain biochemical parameters that may influence the length of the VWP in Holstein cows and to investigate the effects of an extended VWP on some reproductive parameters.

Materials and Methods

Research and Publication Ethics: Permission for the study was received from Tekirdağ Namık Kemal University Animal Experiments Local Ethics Committee (dated 06.03.2025) and numbered T2025-2.

Animals, Nutrition and Management Conditions: The study included 30 healthy Holstein cows aged 2-6 years from a private dairy farm in Tekirdağ Province, Türkiye. All the cows had recently given birth and had no history of puerperal illnesses such as dystocia, retained placenta, endometritis, laminitis, or displaced abomasum. All animals received the same care, food, and reproductive management, and were fed ad libitum twice a day with total mixed rations designed for the transition period. Clean drinking water was continuously available to the animals. All cows included in the study were with normal BCS values.

Study Design: All cows in the study were examined twice, on postpartum (pp) days 45 and 55, by rectal and ultrasonographic examination (Hasvet WED-3100V) at a 10-day intervals. Cows that had a corpus luteum (CL) detected on at least one of these

examinations and a blood progesterone level >1 ng/mL were classified as cyclic (n= 15), while cows with no CL detected in either examination and a progesterone level <1 ng/mL were considered acyclic (n= 15). On the day 55 pp, which is the day of the second examination, blood samples were collected from the tail vein of all animals. The age and BCS of each animal were recorded. The blood samples were centrifuged at 3000 rpm for 15 minutes, and the serum was separated and stored at -80°C until analysis. β-hydroxybutyrate (BHB), nonesterified fatty acids (NEFA), glucose, cholesterol, and triglyceride levels were measured using an autoanalyzer (Randox, RX Imola, Crumlin, United Kingdom). Progesterone determined was using chemiluminescence technique with an autoanalyzer (Roche Cobas e 701). The first estrus following the VWP was determined based on increased activity measured by pedometer, increased uterine tone on rectal palpation, and the presence of a Graafian follicle in the ovaries. Reproductive performance of the animals were evaluated using the farm records to determine the number of days from calving to first insemination and from calving to conception for each animal included in the study.

Statistical Analysis: Normality of the data was assessed using the Shapiro-Wilk test. Parameters showing normal distribution were analyzed using the parametric unpaired t-test, while those not normally distributed were analyzed with the non-parametric Mann-Whitney test. All analyses were conducted using the GraphPad Prism 9.4.1 software. Statistical significance was set at *p*<0.05.

Results

There were no statistically significant differences between the groups in terms of biochemical parameters (BHB, NEFA, glucose, cholesterol, triglycerides) (p>0.05) (Table 1). Similarly, parity and BCS showed no statistically significant differences between the groups (p>0.05) (Table 1).

In acyclic cows, the intervals from calving to first estrus, calving to first insemination, and calving to conception were found to be significantly shorter compared to cyclic cows (p<0.01) (Table 2).

Table 1. Distribution of histopathological parameters in the groups

Parameter	Group	Mean ± SEM	Median (IQR)	<i>p</i> -value	
BCS	Acyclic	3.52 ± 0.13	3.75 (3.5-4.0)	0.3321	
	Cyclic	3.68 ± 0.09	3.5 (3.5-4.0)		
Parity	Acyclic	2.64 ± 0.45	2.0 (1.0-4.0)	0.8663	
	Cyclic	2.55 ± 0.28	3.0 (2.0-3.0)		
NEFA (mmol/L)	Acyclic	0.42 ± 0.07	0.37 (0.24-0.56)	0.5774	
	Cyclic	0.37 ± 0.05	0.37 (0.23-0.46)		
BHB (mmol/L)	Acyclic	0.76 ± 0.20	0.49 (0.33-0.77)	0.3913	
	Cyclic	0.81 ± 0.22	0.59 (0.46-0.76)		
Glucose (mg/dL)	Acyclic	56.76 ± 1.71	58.71 (50.96-62.41)	>0.9999	
	Cyclic	56.86 ± 1.33	57.58 (52.68-59.86)		
Cholesterol (mg/dL)	Acyclic	96.24 ± 15.02	92.68 (61.29-115.7)	0.2372	
	Cyclic	127.00 ± 20.34	92.76 (83.03-166.3)		
Triglyceride (mg/dL)	Acyclic	8.83 ± 1.24	8.54 (5.10-12.45)	0.2703	
	Cyclic	10.56 ± 1.38	10.08 (7.21-14.17)		

BCS: Body Condition Score, NEFA: Non-esterified fatty acids, BHB: Beta-hydroxybutyrate.

Table 2. Comparison of reproductive parameters between the groups

Parameter	Group	Mean ± SEM	Median (IQR)	<i>p</i> -value
Cabina to First Fature (days)	Acyclic	170.20 ± 18.97	150 (120-213)	<0.0001
Calving to First Estrus (days)	Cyclic	63.09 ± 5.30	60 (48-80)	
Colving to First Incomination (days)	Acyclic	172.70 ± 17.11	150 (140-200)	<0.0001
Calving to First Insemination (days)	Cyclic	72.55 ± 4.35	70 (60-85)	
Cabina to Consortion (days)	Acyclic	187.70 ± 15.83	165 (150-230)	<0.0001
Calving to Conception (days)	Cyclic	87.36 ± 4.81	90 (80-100)	

Discussion

The postpartum period is critical for the reproductive performance and overall health of dairy cows. The complex interaction between hormonal dynamics and metabolic status plays a significant role in determining reproductive outcomes. The aim of this study was to explore the effects of selected biochemical and reproductive parameters at the end of the voluntary waiting period on reproductive efficiency in cyclic and acyclic cows.

Changes in BCS during the transition period are regarded as markers of negative energy balance (NEB) (16). Cows that resume cyclic activity early after calving have been reported to have higher BCS compared to acyclic cows. The reason for this is that cows with a higher BCS usually have better nutritional condition and sufficient gonadotropin secretion (17, 18). However, the present study found no significant difference in BCS between cyclic and acyclic cows (*p*>0.05). The similarity in nutrition and management strategies between both groups could explain why this difference did not reach statistical significance.

It has been reported that parity has a significant effect on the resumption of ovarian activity after calving. Cows that gave birth for the first time typically experience a later onset of ovarian cyclicity compared to

those that calved multiple times (19-21). However, in the present study, no significant difference was found between the parities of cyclic and acyclic cows (p>0.05). The reason for this could be the fact that the animals in the study were not grouped as primiparous and multiparous and were selected with similar parities.

Non-esterified fatty acids and BHB are considered key indicators of NEB. It has been reported that there is a relationship between the resumption of ovarian cyclicity and NEB after calving (22). Elevated levels of NEFA and BHB, which are indicators of NEB, have been shown to negatively affect ovarian activity (23, 24). However, other studies have also reported that NEFA and BHB do not directly affect the resumption of ovarian cyclic activity (25). In the present study, no significant difference was found between the NEFA and BHB levels in cyclic and acyclic cows (p>0.05). These results are consistent with the findings of Teixeira et al. (25). The lack of disparities between the groups suggests that both were controlled with efficient feeding regimens. Differences between studies could be attributed to the number of animals in each group and the feeding regimens they followed.

The effects of blood glucose levels on postpartum ovarian cyclic activity are not exactly clear, and there are some inconsistencies in the studies on this topic (13, 26,

27). Some studies found no link between serum glucose levels and the delay in postpartum ovarian cyclic activity (13, 26, 27). Others (28, 29), however, argue that glucose is essential for normal ovarian dynamics in dairy cows, with cyclic cows showing much higher glucose levels than acyclic cows. The current study found no significant difference in glucose levels between the groups (*p*>0.05). These findings agree with those of Jeong et al. (13), Garverick et al. (26), and Obese et al. (27). The absence of changes in glucose concentrations is likely due to the strict homeostatic control over glucose levels (30).

Cholesterol is an important substrate for the synthesis of ovarian sex hormones and has a significant effect on follicular development. It has been reported that an imbalance in cholesterol homeostasis may have a negative impact on ovarian structure and function (31). In the present study, although no significant difference was found in cholesterol and triglyceride levels (p>0.05), higher cholesterol levels were seen in cyclic cows. Cholesterol also plays a critical role in the synthesis of steroid hormones, which could indicate that hormonal activity is more intense in cyclic cows. This increase in cholesterol could be related to the support of follicular development and luteal function. It may also reflect the positive effects of effective nutritional interventions on lipid metabolism. Higher cholesterol levels may suggest higher hormonal activity, which is beneficial to reproductive health. Cholesterol is a precursor to the synthesis of steroid hormones such as progesterone and estrogen; therefore, higher levels could suggest increased hormonal activity (32). Subtle differences in our findings suggest that lipid metabolism was regulated by successful nutritional interventions.

References

- Schmidt GH. Effect of length of calving intervals on income over feed and variable costs. J Dairy Sci 1989; 72: 1605-1611.
- Dijkhuizen AA, Stelwagen J, Renkema JA. Economic aspects of reproductive failure level in dairy cattle. 1. Financial loss at farm level. Preventive Vet Med 1984; 3: 251-263
- Opsomer G, Mijten P, Coryn M, et al. Post-partum anoestrus in dairy cows: A review. Vet Quar 1996; 18: 68-75
- Schefers JM, Weigel KA, Rawson CL, et al. Management practices associated with conception rate and service rate of lactating Holstein cows in large, commercial dairy herds. J Dairy Sci 2010; 93: 1459-1467.
- Ferguson JD, Skidmore A. Reproductive performance in a select sample of dairy herds. J Dairy Sci 2013; 96: 1269-1289.
- Peter AT, Vos PLAM, Ambrose DJ. Postpartum anestrus in dairy cattle. Theriogenology 2009; 71: 1333-1342.
- Galvão KN, Frajblat M, Butler WR, et al. Effect of early postpartum ovulation on fertility in dairy cows. Reprod Dom Anim 2010; 45: e207-211.

The resumption of ovarian cyclicity after calving is important for protecting reproductive health in dairy cows. It affects calving intervals and reproductive performance directly, which in turn affects the profitability of dairy farms (15, 33). Delays in postpartum ovarian cyclic activity also extend the VWP, and cows with a longer VWP have lower calving frequency (34). Cows with regular postpartum ovarian cyclic activity are found to have better reproductive performance than cows with delayed postpartum ovarian activity (14). Shrestha et al. (14) reported that the calving to first insemination interval was 66.7 days in cyclic cows, compared to 92.7 days in anestrous cows. In the current study, the calving to first insemination interval was 72.55 days in cyclic cows and 172.7 days in acyclic cows. Both the first insemination and conception intervals were significantly earlier in cyclic cows. On the other hand, these intervals were delayed in acyclic cows. For cyclic cows, the calving to conception period was 87.36 days, and for acyclic cows, it was 187.70 days. Similar to our study, Ledoux et al. (35) and Gautam et al. (36) found that cows with delayed ovarian activity had longer calving to first insemination and calving to conception intervals than cows with normal ovarian function.

In conclusion, in the current study, no significant differences were found between cyclic and acyclic cows in terms of biochemical parameters, parity, or BCS. However, cyclic cows had significantly higher calving to first estrus, calving to first insemination, and calving to conception intervals compared to acyclic cows. These findings highlight the importance of monitoring cyclicity in herd management, further demonstrating that cows that return to cyclical activity at the end of the VWP have better reproductive performance.

- Păcală N, Bencsik I, Dronca D, et al. Possibilities to Shorten the Duration of Voluntary Waiting Period at Dairy Cows. Anim Sci Bio 2013; 46: 71-73.
- Mapletoft RJ, Bó GA, Baruselli PS. Control of ovarian function for assisted reproductive technologies in cattle. Anim Reprod 2009; 6: 114-124.
- Ambrose DJ. Postpartum anestrus and its management in dairy cattle. In: Hopper RM (editor). Chapter 34: Bovine Reproduction, 2nd Edition, Wiley 2021: 408-430.
- Butler WR. Energy balance relationships with follicular development, ovulation and fertility in postpartum dairy cows. Livestock Produc Sci 2003; 83: 211-218.
- Santos JEP, Rutigliano HM, Sá Filho MF. Risk factors for resumption of postpartum estrous cycles and embryonic survival in lactating dairy cows. Anim Reprod Sci 2009; 110: 207-221.
- Jeong JK, Choi IS, Kang HG, et al. Relationship between serum metabolites, body condition, peri-and postpartum health and resumption of postpartum cyclicity in dairy cows. Livestock Sci 2015; 181: 31-37.
- Shrestha HK, Nakao T, Suzuki T, et al. Effects of abnormal ovarian cycles during pre-service period postpartum on subsequent reproductive performance of

- high-producing Holstein cows. Theriogenology 2004; 61: 1559-1571.
- Walsh RB, Kelton DF, Duffield TF, et al. Prevalence and risk factors for postpartum anovulatory condition in dairy cows. J Dairy Sci 2007; 90: 315-324.
- Gärtner T, Gernand E, Gottschalk J, et al. Relationships between body condition, body condition loss, and serum metabolites during the transition period in primiparous and multiparous cows. J Dairy Sci 2019; 102: 9187-9199.
- Montiel F, Ahuja C. Body condition and suckling as factors influencing the duration of postpartum anestrus in cattle: A review. Anim Reprod Sci 2005; 85: 1-26.
- Damptey JK, Obese FY, Aboagye GS, et al. Blood metabolite concentrations and postpartum resumption of ovarian cyclicity in Sanga cows. South African J Anim Sci 2014; 44: 10-17.
- Sharma A, Singh M, Sharma A, et al. Effect of BCS and parity on uterine involution, ovarian rebound and various fertility parameters in postpartum dairy cows. Indian J Anim Sci 2018; 88: 526-529.
- Saqib MN, Qureshi MS, Khan RU. Changes in postpartum metabolites and resumption of ovarian cyclicity in primiparous and multiparous dairy cows. Applied Bio Chem 2018; 61: 107-111.
- Tanaka T, Arai M, Ohtani S, et al. Influence of parity on follicular dynamics and resumption of ovarian cycle in postpartum dairy cows. Anim Reprod Sci 2008; 108: 134-143.
- Vercouteren MMAA, Bittar JHJ, Pinedo PJ, et al. Factors associated with early cyclicity in postpartum dairy cows. J Dairy Sci 2015; 98: 229-239.
- Ribeiro ES, Lima FS, Greco LF, et al. Prevalence of periparturient diseases and effects on fertility of seasonally calving grazing dairy cows supplemented with concentrates. J Dairy Sci 2013; 96: 5682-5697.
- Chapinal N, Carson ME, LeBlanc SJ, et al. The association of serum metabolites in the transition period with milk production and early-lactation reproductive performance. J Dairy Sci 2012; 95: 1301-1309.
- Teixeira HCA, Barbosa EA, Souto PLG, et al. Postpartum hormone and energy profiles and their influence on the resumption of ovarian cyclicity in Curraleiro Pé-Duro cows. Theriogenology 2017; 95: 133-140.

- Garverick HA, Harris MN, Vogel-Bluel R, et al. Concentrations of nonesterified fatty acids and glucose in blood of periparturient dairy cows are indicative of pregnancy success at first insemination. J Dairy Sci 2013; 96: 181-188.
- Obese FY, Martin GB, Blackberry MA, et al. Upgrading local cattle in tropical West Africa: Metabolic hormone concentrations during the post-partum period in Sanga and FriesianSanga crossbred cows. Livestock Sci 2015; 171: 84-92.
- Barson RK, Padder S, Sayam ASM, et al. Serum glucose, urea nitrogen, cholesterol, and total proteins in crossbred repeat breeder and normally cyclic cows. J Adv Vet Anim Res 2019; 6: 82-85.
- Uddin AHMM, Atikuzzaman M, Islam MS, et al. Postpartum cyclicity of Holstein-Friesian crossbred cows shows relation with serum biochemical profiles during 45-60 days postpartum. Pakistan Vet J 2020; 40: 257-260.
- Herdt TH. Variability characteristics and test selection in herdlevel nutritional and metabolic profile testing. Vet Clin Food Anim Prac 2000; 16: 387-403.
- 31. Huang Q, Liu Y, Yang Z, et al. The effects of cholesterol metabolism on follicular development and ovarian function. Current Mol Med 2019; 19: 719-730.
- García JL, Uhía I, García E, et al. Bacterial degradation of cholesterol and other contaminant steroids. In: Microbial Bioremediation of Nonmetals: Current Research, Chapter: 2, Caister Academic Press 2011; 23-43.
- Galvão KN, Federico P, De Vries A, et al. Economic comparison of reproductive programs for dairy herds using estrus detection, timed artificial insemination, or a combination. J Dairy Sci 2013; 96: 2681–2693.
- Burgers EE, Goselink RM, Bruckmaier RM, et al. Effect of voluntary waiting period on metabolism of dairy cows during different phases of the lactation. J Anim Sci 2023; 101: 1-16.
- Ledoux D, Touze JL, Richard C, et al. Abnormal patterns of resumption of cyclicity after calving in Holstein cows: risk factors, relationships with the ultrasound appearance of the ovaries and with gestation failure after Al. Revue Méd Vét 2011; 162: 98-106.
- Gautam G, Nakao T, Yamada K, et al. Defining delayed resumption of ovarian activity postpartum and its impact on subsequent reproductive performance in Holstein cows. Theriogenology 2010; 73: 180-189.